Termination Proofs for Higher-order Rewrite
Systems

Jaco van de Pol

Department of Philosophy, Utrecht University
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
email: jaco@phil.ruu.nl

Abstract. This paper deals with termination proofs for Higher-Order
Rewrite Systems (HRSs), introduced in [12]. This formalism combines
the computational aspects of term rewriting and simply typed lambda
calculus. The result is a proof technique for the termination of a HRS,
similar to the proof technique “Termination by interpretation in a well-
founded monotone algebra”, described in [8, 19]. The resulting technique
is as follows: Choose a higher-order algebra with operations for each
function symbol in the HRS, equipped with some well-founded partial
ordering. The operations must be strictly monotonic in this ordering.
This choice generates a model for the HRS. If the choice can be made in
such a way that for each rule the interpretation of the left hand side is
greater than the interpretation of the right hand side, then the HRS is
terminating. At the end of the paper some applications of this technique
are given, which show that this technique is natural and can easily be

applied.

1 Introduction

In the field of automated proof verification one sees a development towards
higher-order concepts. In the generic theorem prover Isabelle [15], typed lambda
calculus is used as the syntax for the formulae. In other systems, as Coq [14],
typed lambda calculus is even used for the logic, using the Curry-Howard iso-
morphism which links formulae to types and proofs to terms.

This development is mirrored in the research on Term Rewriting Systems
(TRS). There are different formalisms dealing with the combination of term
rewriting and an abstraction mechanism. In [11] the concept of Combinatory
Reduction Systems (CRS) was introduced. These systems essentially are TRSs
with bound variables. In [12, 13] the formalism of Higher-order Rewrite Systems
(HRS) is described, which is very similar to CRSs in essence, but rather different
in presentation. A precise comparison is given in [17]. A more general setting is
given in [18]. Quite other approaches can be found in [4, 9].

Two important issues concerning rewrite systems are termination and con-
fluence. For results about local confluence of HRSs and confluence of orthogonal
HRSs the reader is referred to [12] and [13] respectively. In [11, ch. II.3] the con-
fluence of regular CRSs is proved. However, the question of termination of the
higher-order frameworks seems hardly to have been explored. As far as we know,

307

Definition 1. T(B) is the smallest set satisfying

- BCT(B).
—Ifo,7€ T(B) thenalsos — 7 € T(B).

Terms are constructed from typed constants and typed variables. Let Cr be
disjoint sets of function symbols (also called constants) of type 7. The union | JC;
is written as C. Similarly, V, and V are sets of typed variables. Each V; is supposed
to be infinite. Furthermore, C and V are disjoint. To specialise particular sets of
constants and variables, the notion of a signature is introduced:

Definition 2. A signature (F) is a triple (B,C,V), where B are the base types,
C is a set of typed constants and V is a set of typed variables.

Given a signature F we can define the set of simply typed lambda terms:

Definition 3. Let F be the signature (B,C,V). The sets A7*(F) (with r € T(B))
are defined inductively by:

- VT - A:(]:),

-C- C A:(f)a

—Ifme AT, (F)and n € A7 (F), then mn € A7 (F) (application),
— Hfz €V, and m € A7 (F), then A\z.m € A~ (F) (abstraction).

T—=T

The set of simply typed lambda terms over the signature F is U-reT(B) A7 (F)
and is denoted by A~ (F).

The set of free variables of a well-typed term ¢ is defined as usual and denoted
by FV(t). In the sequel we often abbreviate T(B) and A~ (F) to T and A,
Terms without free variables are called closed. A variable z is called bound in
a term ¢ if it occurs in a subterm of ¢ of the form Az.s. Terms that only differ
in the renaming of bound variables (known as a-conversion) are identified. This
permits us to stick to the convention that variables never occur free and bound
as well in any mathematical context. See [2, p. 26] for details about the variable
convention.

To express the complexity of a term, the notion of type level is defined in-
ductively on types:

Definition 4. The type level of a term in A7 is TL(o), where

— TL(b) =0, for b eB,
— TL(o — 7) = maz(TL(o) + 1,TL(r)).

A substitution is a mapping from variables to terms of the same type. More
precisely:

Definition 5. A substitution 6 is a finite function {z1—t1,...,2, — t,}, with
t; € AT ifz; € V;. Theset {z1,...,2,} is called the domain of this substitution,
denoted by DOM (6).

306

only in [11, ch. I1.6.2] a sufficient condition for termination of regular CRSs is
given. With this condition, stated in terms of redexes and descendants, a termi-
nation proof for CRSs remains a syntactical matter. Other work on this line is
done in [10]. We also refer to [9] where a recursion scheme for higher-order rules
is given that guarantees termination.

Termination of first-order Term Rewriting is already an undecidable problem.
But as the termination of TRSs is an interesting question, many semi-algorithms
and characterisations of termination are proposed in the literature. A nice char-
acterisation of termination is given in [19]. It builds on the “Increasing Inter-
pretation Method” of [8, p. 367]. The function symbols of a TRS R have to
be interpreted as strictly monotonic operations in some well-founded algebra.
This interpretation is extended to closed terms as a usual algebraic homomor-
phism. Now the associated rewrite relation is terminating if every left hand side
is greater (under the chosen interpretation) than the belonging right hand side,
for each possible interpretation of the variables in that rule.

The strength of this characterisation is that one can concentrate on the “n-
tuitive reason” for termination. This intuition can be translated in suitable op-
erations on well-founded orderings, thus using semantical arguments. The real
termination proof consists of testing a simple condition on the rules only instead
of on all possible rewrite steps or all possible redexes. This semantical approach
is more convenient than a syntactical technique.

The aim of this paper is to generalise this semantical characterisation of
termination for TRSs to one for HRSs. The definition of Higher-order Rewriting
We use, is close to [18], so it is an extension of (12, 13]. The main result is that
such a generalisation is possible. The interpretation of terms can be extended
to the interpretation of higher-order terms. The orderings and the notion of
strictness can also be generalised. The techniques to achieve this are similar to
those used in [5, 6]. Moreover, the result that termination proofs can be given
with a well-founded monotone algebra in [19] carries over to HRSs with simple
conditions on the well-founded ordering. With this technique some natural HRSs
are proved to be terminating (see Section 6).

I'like to thank Jan Friso Groote, who supplied some crucial ideas. I am also
grateful to Jan Bergstra, Marc Bezem, Tonny Hurkens, Vincent van Oostrom,
Alex Sellink and Jan Springintveld for reading previous versions of this doc-
ument and for their suggestions. Finally, I thank H. Schwichtenberg and both
referees for their close reading of the preliminary version, resulting in several
improvements.

2 Term Rewriting in the Simply Typed Lambda Calculus

2.1 Types and Terms

In this section the sets of types and terms of simply typed lambda calculus are
defined. The types are constructed from a set of base types. Let B be the set of
base types. Then the set T(B) of simple types over these base types is defined as:

308

Substitutions are extended to homomorphisms on terms in the standard way.
Due to the variable convention, substitution cannot create new bindings. We
denote 6(t) by t° or, in case § = {z = a}, by t[z := q].

We recall the 8- and 7-reduction schemes for the lambda calculus, denoted
by —4 and —y respectively:

Definition 6. The relation —p is the smallest compatible relation satisfying
(Az.m)n —g m[z := n]. The relation —y is the smallest compatible relation
satisfying Az.(fz) —n f. The reflexive, symmetric and transitive closure of —n
is denoted by =,,.

Standard theory tells us that every A”-term has a unique normal form with
respect to B-conversion. This B-normal form is denoted by t |g. Normal forms
are always of the form Az;. - - AT,.(aty - tn,), where a € VUC.

2.2 Higher-order Rewrite Systems

There are various definitions of higher-order rewrite mechanisms in recent liter-
ature [11, 4, 12, 13, 18]. The definition in this subsection is not meant to add a
new formalism to the existing ones. Most conditions on the rules are dropped,
because they are not necessary in the proof. The rewrite relation is as liberal as
possible. Of course, the main result applies to formalisms admitting fewer rules
and fewer rewrite steps. The chosen formalism is much like the formalism in [18,
ch. 4.1], but we made some choices,
A Higher-order Rewrite System is given by a signature and a set of rules:

Definition 7. A Higher-order Rewrite System R is a tuple (F, R), where F is
a signature and R is a set of rules in this signature. A rule is a pair (I,7), with
l,r € A7(F), both closed B-normal forms.

Rules (I, 7) are denoted by I — r. In this rule, [is called the left hand side and
7 the right hand side.

The definition of a rule is the same as in 18, p. 46], except that we don’t use 7-
long forms. Free variables are not admitted in a rule, for reasons explained below.
In the examples, we mostly leave out the A-binders in front of the left- and right
hand side of the rules for shortness, thus introducing free variables par abuse.
The definition of HRSs in (13, p. 308] is a special case of Definition 7, because
it has some extra conditions on the occurrences of the free variables (which
should be abstracted from in the present definition) to guarantee decidability of
a rewrite step. This restriction is not needed in the termination result.

Definition 8. A contert is a term AO.C, where C is in B-normal form and
O€ FV(C).

Definition 9. Let R = (F,R) be an HRS. The rewrite relation is defined by:
8 =g t if and only if there exist a context C' and a rule | — r € R, such that
(Cl)lg=y s and (Cr)lg=nt. Only s and ¢ in B-normal form will be considered.

309

Definition 9 differs in three aspects from the definition of the higher-order rewrite
relation in (18, p. 46]. Firstly, 7-long forms are not required, but furthermore the
notion of positions is circumvented. In this way the variable convention can be
upheld!. To be able to rewrite subterms with bound variables the rules are
required to be closed.

The proposed definition of rewriting is inspired by the Leibniz-equality in
higher-order logic: I =p r abbreviates VP: D — Prop.P(r) — P(l). An appli-
cation of this formula reduces any goal P(l) to a goal P(r). To have a proper
notion of reduction, the condition O & FV(C) is added. To ensure that C really
depends on O, the condition that C is in B-normal form is added. Without these
conditions we would never have termination:

Ezample 1. Let | — r be a rule of HRS R. If AO.a were a context, we would
have the rewrite step a = ((AD.a)l) |—g ((AD.a)r) |g= a. The same example
can be given if AO.()\y.a)0 were a context.

The last difference with [18] is that more occurrences of O in a context are
admitted. This is another advantage of seeing contexts as ordinary A-terms and
is close to the pragmatics of Leibniz equality. The transitive closure of the rewrite
relation is not changed if we allow this form of parallelism, so confluence and
termination are maintained.

Here is an example of rewriting:

Ezample 2. Let + be a binary function symbol. If there is a rule AX.X + X —
AX.X, then we have the following rewrite steps:

Term Reduct] Context used
P+P - P A0.0P
(P+P)+(P+P)— (P+P)A0.OP + P) or AD.(OP) + (OP)
(P+P)+(P+P)— P AD.O0(OP)
Agqy.(qy) + (qy) — Agy.(gy) AOgy.O(qy)

3 The Model of Hereditarily Monotonic Functionals

We try to apply the general idea of the proof technique “termination by interpre-
tation” for TRSs in [8, 19] to HRSs. The outline of this technique is as follows:
The function symbols are interpreted by operations of the same arity in an alge-
bra, equipped with a well-founded partial order. This interpretation is extended
to the terms of the TRS in an algebraic way. The interpretation is chosen in such
a way that for all rules, the left hand side is interpreted by a greater value than
the right hand side. If such an interpretation can be found, the TRS is termi-
nating. To prove the correctness of this technique, first we have to show that the
ordering on terms is closed under substitution. The other step is to show that
the ordering is closed under placing terms into a context. This can be proved

! In the notion of positions and occurrences, a replacement can introduce new bindings.
Therefore contexts cannot be seen modulo a-conversion. See [12, p. 343

310

using the fact that the function symbols are interpreted by strictly monotonic
functions, thus preserving the ordering. Now we have for any substitution 8 and
context C that C[I’] > C|[r®]. This is exactly the form of a rewrite step, thus
showing that a rewrite step can be translated to a decrease in the well-founded
ordering. In this way termination of rewriting is guaranteed.

In our definition of higher-order rewriting, we don’t need closure under sub-
stitution, as the rules consist of closed terms. We only need closure under placing
terms into a context; but this doesn’t help us, because substitutions can easily be
coded as special contexts. Matters are more complicated than in the first-order
case. The notions of interpretation, strictness and ordering have to be extended
to higher-order concepts. After these definitions the same idea can be used. It
will turn out that we have to use two different orderings to show termination.
The condition on the rules of an HRS is stated in terms of one ordering, so we try
to show that for every rule (I = r),1>; r. Now we use a second ordering to show
that for any context C, Cl >, Cr. This second ordering will be well-founded,
thus proving termination of the HRS.

In this chapter we will define an interpretation for the terms into the hered-
itarily monotonic functions. A similar idea occurs already in [6] and [5]. One
difference is that in this paper two B-equivalent terms have the same interpreta-
tion. This difference stems from the fact that we don’t count B-steps. They are
only used in the meta-language.

3.1 Interpretation of types by monotonic function spaces
Let us start with a type interpretation Z of the set of base types B:

Definition 10. A type interpretation 7 is a set of non-empty strict partial orders
{(MBa >B)|B € B}

Starting from a base type interpretation Z, we define the interpretation of all
types as sets of hereditarily monotonic functionals. A similar idea occurs in
[6, p. 457], which shows that terms of the typed M-I calculus denote strictly
monotonic functions. The sets of hereditarily monotonic functions (monotonic
functions for short) are denoted by M, and depend on an ordering, denoted by
mon=. This partial order is inherited from the partial order on the interpretation
of the base types in the way defined below. This ordering itself depends on the
notion of monotonicity, so we give a definition by simultaneous induction:

Definition 11.

— For p € B:
® M, is as given by 7,
® Amon2, biff a,be M, anda>,bora=5».

~Forp=0c—r:
s M,={feM, - M, [forallz,y € M,,if £ mon>, y then f(z) mon>~

W},

hd fmoan g fig€ Mp and for all z € M,, f(.’l:) mon>r g(z).

311

Instead of a € M, for some p we say: a is monotonic. Furthermore, a set M p is
called a domain. Now we can define the following strict partial order:

Definition 12. The relation mon>, on domains M, with p € T is defined with
induction on p:

—IfpeBanda,be M, then a 05>, b if and only if o >, b.
~Hp=0—r7and f,g € M, then f mon>, g if and only if for all z € M,,
f(m) mon>r g(:l:)

The type subscripts in mop> p and mon>, are omitted when this is not confusing.
Note that f non> g means that f is pointwise greater than g; only monotonic
points are in the domain of f and g. The reader is warned not to confuse f mon> g
with f non> gV f = g. We have the following fact about men> and mon> only in
one direction:

Lemmal3. For allp e T and FL9€EMu, if fraon>gor f = g, then f non> g.

Proof. (Induction on the type of f and 9) Let fmon> g, or f=g. If pEBitis
trivial. If p = 0 — 7, take an z € M,. Then F(2) mon> g(z) (in case f mop> 9)
or f(z) = g(z). But then, by induction hypothesis, f(z) mon> g(z). Now by
Definition 11, f pon> g. O

Lemmal4. Transitivity between mon> and mon>:

= If f mon> g and g 00> h then f mon=> h.
= If f mon> g and g mon> h then f mon> h.
= If f mon> g and 9 mon> h then f pnon> h.
= If f mon> g and g mop> h then f mon> h.

Proof. Simple induction on the type of f. n]

3.2 Interpretation of terms in domains

Now we can take our next step: A term in A7 has to be interpreted as a value
in the domain M,. To interpret the terms we have to specify what the inter-
pretation of the free variables and the constants will be. The free variables are
dealt with by valuations: mappings from variables to values. The interpretation
of constants is given by a constant interpretation.

Definition 15. A valuation « is a family of mappings a,, with o, : V, - M,
for pe T.

With afz := a] we denote the valuation that behaves like a on all variables
except x, where it returns a. To compare two valuations we define:

Definition 16. a; > a5 if and only if for each z € V, o3 (z) mon> az(z).

The constants have to be interpreted by functionals of the right domain.
Therefore the following notion is introduced:

312

Definition17. A constant interpretation 7 is a family of functions 7, : C, —
M, for o € T.

Now we are ready to define the interpretation of terms, depending on a
particular choice for the constant interpretation 7.

Definition 18. The interpretation of a term under the valuation « is defined
inductively on the structure of the term:

- [z]« = a(z) for z € V.

~ [e]a = T(c) for c € C.

= [mnle = [m]a[n]a-

- [Az.m]a=Aa € .M.,.[[m]]a[z:a] forz e V,.
If s is a closed term, then [s], does not depend on @, sO we may suppress this
subscript.? The following theorem states that the interpretation of each term is
monotonic. The proof is by simultaneous induction of the following conjunct:

Proposition 19. For each s € A~ and valuations o, 3:

1. [s]a is monotonic.
2. If a > B then [s]a mon> [s]s-

Proof. (induction on the structure of s)
Ifs=zeV:

L. [s]a = a(z) is monotonic by Definition 15.
2. [s]a = &(2) men> B(z) = [s]s. (From Definition 16).

Ifs=celC:

L. [s]a = J(c) is monotonic by Definition 17.
2. [s]a = T (c) = [s], so they are mon>-related (Lemma 13).

If s =mn:

1. By induction hypothesis (1) both [m], and [n]o are monotonic. Then by
Definition 11, also [s]. = [m].[n]« is monotonic.

2. By induction hypothesis (2) [m]a mon> [m]s. By induction hypothesis (1)
[n]o is monotonic, so we have, with Definition 11, that [m]alr]a mon >
[m]s[n]a. We also get from the induction hypotheses (1,2) that [n]a mon>
[n]s and [m]s is monotonic. Therefore, with Definition 11, [m]g[n]a mon>
[m]s[n]s- Now, using transitivity of mon> we have [s]a mon=> [3]5-

If s=Xz.t: (Say z € V,)

1. Firstly, choose a € M,, then [Az.t]a(a) = [tlafz:=a)- This is in M, by
induction hypothesis (1), so [s]a € M, — M,. Furthermore, if @ mon>4 b,
then afz := a] > afz := ¥], so by induction hypothesis (2) [t]ajz:=a] mon>
[t]afo:=s)- This is equivalent to [5]a(a) mon> [s]a(b), so [s]e is monotonic.

? The existence of at least one valuation is guaranteed because the base domains are
non-empty

313

2. Let a € M,. We have o[z := a] mon> B[z := a]. So using induction hypothe-

sis (2) we can compute: [Xz.t]a(a) = [t]afoi=a) mon> [t]g(ercal = [Az.t]5(a).
So indeed» ’[s]]a mon2> lISH,G- = Blz:=a] [[Ilﬂ({)j

Corollary 20. Given o valuation a, [-]a is a family of functions from AT to
M, for each o € T.

We have an ordering on the domains and an interpretation mapping terms
into domains. Using this interpretation we can define an ordering on terms. The
free variables are dealt with by valuations:

Definition 21. For terms s, in A™, 8 mon> t if and only if for each valuation
o, l]:s]]a mon> |It]]a-

The next lemma shows that free and bound variables are treated similarly
with respect to the ordering mon>:

Lemma?22. If for two A7 -terms s mon> t then Az.s pop> Az.t.

Proof. Let s mon> t, say © € V,. Choose k € M, arbitrarily. Let a be any
valuation. Then

|[/\z.s]]a(k) = ﬂsﬂa[z::.k] mon>r ﬂt]]a[z::':k] = f[’\Zt]]a(k) .

The equalities hold by Definition 18, the inequality by Definition 21. The cal-
culation holds for any k, so [Az.$]a mon>o—r [AT.t]a. This holds for any a, so
AZ.8 mon> AZ.E u]

3.3 Hereditarily monotonic functionals serve as a model of ’\E:n

We show that the monotonic functionals are a model of Ag.n- Lemma 24 estab-
lishes a link between substitutions and valuations. As a corollary we get that
the mon>-ordering is closed under substitution. Furthermore, the interpretation
in the model of two 3, -convertible terms is the same. Together with Lemma 19
this proves that M forms a A™-model. No new technique is used here, the proofs
resemble those in [6, 5, 19].

Definition 23. Let 8 be a substitution and « a valuation. Then the composition
a o6 is a new valuation, mapping z — [£%]..

The mapping o8 is indeed a valuation, because [z%], is monotonic by Proposi-
tion 19. We have the following connection between valuations and substitutions:

Lemma 24 (Substitution Lemma). Let 6 be a substitution and a a valua-
tion. Then for each term s € A~ we have [5%]a = [5]acs-

Proof. (induction on the structure of s)

— s =z € V: by definition of a0 6.

314

- 5s=c€C: [¥]a = []Joa = T(c) = []aos-

— s = mn: Using the induction hypothesis for m and n, we have
[s°]o = [m*]aln’]a = [mlacoln]acs = [s]ace -

— 8= Az.m: Say z € V,. Let a € M,.

Claim. In this situation we have (afr :=a]) 0 6 = (a0 8)[z := a.

Proof. By the variable convention, z ¢ DOM(6), so z° = z, and for all
y € DOM(6), = ¢ FV(y®). Under this convention, ((ofz := a]) 0)(z) =
[2°afer=a] = @ = ((a 0 8)[z == a])(z). And for y # z: ((afz := a]) 0 6)(y) =
[¥°]afeima) = [¥°]a = (@0 0)(y) = (@ 0 O)[z := a])(y). o

Now this case can be proved by the following calculation:

[5°]a = Aa € My ([magsiza)
= Aa € Mv.({[m]](a[,:za])oo) (by lh)
=Aa € Ma.([m]](aog)[z:=a]) (by claim)
= [[5]]a00 .

0

From the Substitution Lemma we have two corollaries, one with respect to
the ordering mon> and one (Proposition 26) with respect to $-equality.

Corollary 25. If for terms s,t in A™, 8 mon> t then for each substitution 8,
]]
$" mon> 17

Proof. Let s mon> t. Then by Lemma 24, [s°]o = [s]a0s mon> [tlacs = [t?]a for
any valuation o and substitution 6, so indeed s% o> t°. 0

Proposition26. If s —p t for two terms in A™, then [s]a = [t]a for each
valuation .

Proof. (induction to the depth of the S-redex in s.)
Let s —p t. The only interesting case is that the 3-step takes place on top-
level: Let s = (Az.s1)s2, then t = s;[z := s3]. We have the following calculation:

[(Az.51)s2]a = ‘[sl]la[z:[sz]a] = [s1]z == s2]]a -

The first equality holds by Definition 18, the second because of Lemma. 24, ap-
plied on o and the substitution {z := s2}. a

A similar result holds for n-reduction:

Proposition27. If s —, t for two terms in A™, then [s]a = [t]a for each
valuation .

Proof. This is obvious, because the domains have extensional equality. 0

315

4 An ordering which is closed under context

4.1 On strictness

In section 3 we saw that the ordering mon> on terms is closed under substitution.
We would like that this orderingis also closed under placing a term into a context.
The first objection to this is the interpretation of the constants. We have to
ensure that this interpretation is order preserving. The proof in [19] also uses
the condition that the constants have to be interpreted by strictly monotonic
operations. Therefore we define the following notion:

Definition 28. The predicate “f is strictly mon>-monotonic” with f € M p is
defined with induction on p:

—ForpeB: fe Myis always strictly mon>-monotonic.

— For p = 0 — 7: f € M, is strictly moen>-monotonic if and only if for all
€ € M,, f(x) is strictly mon>-monotonic, and for all z,y € Mg, if 2 mon>o ¥
then f(:L‘) mon> T .f(y)

Unfortunately this notion of strict monotonicity is not strong enough. This
is shown in the following example:

Ezample 3. In this example there is one base type, o, which is interpreted by the
natural numbers. Type o — ois written as 1, type 1 — ois written as 2. Consider
the following functional: S := AG € Ma.Ag € M1.G(g) + ¢(0). This is strictly
mon>-monotonic: Let G € Mz and take fmon>1 9, Then S(G)(f) = G(f) +
f(0) mon> G(f) + 9(0) mon2> G(g) +9(0) = $(G)(g)- The last inequality holds,
because G is monotonic. This shows that S(G) is strictly men>-monotonic. Now,
take G mon>2 F and g € My, then S(G)(g) = G(g) + 9(0) mon> F(g) + g(0) =
S(F)(g). This shows that S(G) mon> S(F). So § is strictly men>-monotonic.

But in fact, this is undesired. Consider G := Af.fA and g := Az.5. Then
S(G)(g) = 10, so the A leaves no traces.

This example can be used to “prove” that the following non-terminating HRS is
terminating:

Ezample 4. The definitions of Example 3 are used. Take the signature with one
base type o and constants C = {c,d : 0;@ : 2 — 1 — o}. The set of variables V
includes {z,y : 0; f, g : 1}. In this signature we define the HRS with one rule:

@(Af.fz)(My.c) = Q(Ag.g(@(AS.fz)(Ay.c)))(Ay-d).

First of all, this HRS is not terminating, because the left hand side is a subterm
of the right hand side. Now we choose as interpretation:

I(o) =IN J)=2
J(d)::l ._7(@):5.
Under this interpretation we can compute the left hand side and the right hand

side. It will turn out that the left hand side equals 4 and the right hand side
equals 2. This clearly shows that S cannot be called “strict”.

316

Another objection against strict mon>-monotonicity of contexts, is the inter-
pretation of the variables:

Ezample 5. Let I mon> 7 for some terms I and r. Then it is not the case that
zl mon> zr: Take a valuation o with a(z) = Aa.c, for some constant c, then

[zl]a = [zr]a-

This example shows that although ! mon> 7, We cannot expect that zl mon> zr
for any value for z. So this order is not closed under placing terms into a context.
Fortunately, we can weaken our desires. We don’t need this order for all values for
z, because the free variables of the context (which is in S-normal form) cannot
be instantiated during a rewrite step. Furthermore, if we have the rewrite step
zl —x zr, then it is not the case, that we have the same step for all substitutions
for z: Some substitutions lead to a non legal context. So we have the freedom to
restrict the condition and to look at some particular value of z. The idea, due to
Jan Friso Groote, is to look at precisely those = that preserve the order, that is for
the strictly monotonic z. This leads to a new ordering, s>, which (intuitively)
runs: f s> g if and only if for all strictly monotonic , f(z) str> g(z). This new
ordering is used to compare the terms of the rewrite sequence.

Below a simultaneous definition of a new notion of strictness and a new
ordering 4> is given, in such a way that strictness is stronger than strictly
mon>-monotonic and g,> is weaker than mon>. Here we diverge from 6, 5].

Definition 29. The relation 4>, and the set S, of hereditarily strict function-
als are defined with induction on p € T:

— For peB:
e a 4>, bif and only if a,b € M, and a >, b (according to a fixed type
interpretation 7).
o S, =M,.
— For p=0 — 1: Let f,g € M,, then
o f o>, gif and only if f mon>, ¢° and for all z € S5, f(2) str>r g(z).
e f €S, if and only if
* f € M, and
* for all z € M,, f(z) € S; and
* for all z,y € My, if T ¢tr>, ¥ then f(Z) mon>+ F(¥)-

If f € S, for some p € T, we say that f is strict. We will omit the type
subscripts for 4> ,. Now we can prove the following relation between the different
partial orders:

Lemma30. Let p € T and f,g € M,. If f mon>p g then f s>, g-

Proof. (induction on p):
If p € B the two orderings coincide. Let f mon>, g for p = 0 — 7. By
Lemma 13, f mon> ¢. Take an arbitrary strict z € S,. Then also z € M,,

3 This addition is due to H. Schwichtenberg, and appears to be necessary in applica-
tions with arbitrary high order.

317

$0 f(Z) mon>r g(z). By induction hypothesis, (@) str>r g(z), giving f o> g
(Definition 29). u]

Corollary 31. Let f be strict, then both f is strictly mon>-monotonic and f is
strictly s.>-monotonic. .

Proof. If & mon> ¥ then = 4> y (Lemma 30) and f(Z) mon> f(y), by strictness
of f. If 4> y then by strictness of f: f(z) mon> f(y) and by Lemma 30
f(2) ser> Fy)- o

Thus strict is indeed stronger than strictly mon >-monotonic, and &> is
indeed weaker than mon>. The following example shows that the problem from
Example 3 is solved:

Ezample 6. The functional S = AG € Ma.\g € M;.G(g)+9(0) from Example 3

is not strict: Take 5 if g(0) (1)=0
_ i g(0)=g1)=
G =Ag. { 10 else,

and F = Ag.5. Then F and G are both monotonic, clearly G 4,> F, but the
relation S(G) mon> S(F) doesn’t hold, because S(G)(Az.0) = S(F)(Az.0).

The type level of functional S is 3. In the next two lemmas this complexity
is shown to be essential.

Lemma32. Let f,g € M,. If TL(p) <1 then fsu>p g implies f mon>p g-

Proof. (induction on p).

— p € B: By Definition 29.

— p=o0 — 7: TL(p) must be 1,50 0 € B and TL(r) < 1. Let f 4> g and
z € M,, then z is strict (Definition 29 for base type), so f(z) str>r 9(Z)-
By induction hypothesis f(Z) mon> g(z), so indeed f mon> g O

Lemma33. Let f € M,. If TL(p) < 2 then f strictly mon>-monotonic implies
f 1is strict.

Proof. (induction on p).

— If p € B then f is strict by Definition 29.)

—~ I p =0 — 7 then TL(0) < 1 and TL(r) < 2. Let f be strictly mon>-
monotonic, then for z,y € M, we have f(z) is strictly mon >-Ionotonic
and by induction hypothesis f(z) is strict. Furthermore, if £gr>0 y then
£ mon>e ¥ (Lemma 32), 50 f() mon> f(y). These two facts yield that f is
strict (Definition 29). a

The notion of strictness is extended to the interpretation of constants and
variables:

Definition 34. A constant interpretation J is strict, if J (c) is strict for all
c€eC.

318

Definition35. A valuation « is strict if for each z € V, a(z) is strict.

We can lift &,> from the domain level into the term level in the same way
as we lifted mon>. To treat bound and free variables similarly, we now use strict
valuations only:

Definition 36. For terms s,t of A7, sgr> tif for each strict valuation a,
ﬂsna str> l[t]]a-

Lemma37. For all 5,t € A~ if S mon> t then s g4,> t.

Proof. If s men> t for s,t € A then for all valuations @, [s]a mon>r [t]a- This
implies (using Lemma 30) that [s]« str>+ [t]«- This holds for all @, so certainly
for strict « this relation holds. Therefore s str> b, 0

We end this section with an example that the ordering &,> cannot be used
for the rules, so the ordering mon> is still necessary.

Ezample 7. Let for constants [and r of base type, the only rule of an HRS be
Az.zl — Az.zr. An interpretation can be chosen, such that ! ;on> 7. Then
Az.zl o;> Az.zr, but yet the HRS is non-terminating: Choose as context C =
AB.O(Ay.c). Then (C(zl)) |5— (C(zr)) 1g, which is equivalent to ¢ — c. So the
ordering > is too weak for the rules. :

4.2 The ordering ;> is well-founded

The definition of strictness (Definition 29) is rather complex and it is not a priori
clear that strict functionals exist. Some extra conditions are needed to guarantee
that strict functionals exist in every domain. These conditions are collected in
the following notion:

Definition 38. A type interpretation 7 = {(Mp,>p)|B € B} is called a well-
founded type interpretation if the following conditions on the interpretation of
base types are satisfied:

— For each b € B, M, is non-empty.
— For each b € B, >; is well-founded.
— For each b, ¢ € B, there exists a strict function in My_,._,..

We suppose that for each combination (b, c) of base types one strict function
is chosen and called +4,. (written infix when possible). This suggestive defini-
tion is justified by Proposition 40 which states that under a well-founded type
interpretation, the domains are well-founded. But first, we need a lemma, say-
ing that strict inhabitants exist for all domains, if we have a well-founded type
interpretation:

Lemma39. If the underlying type interpretation is well-founded, then for every
p €T there is at least one inhabitant of S,, which we will call S,.

319

Proof. (with induction on the structure of p)

If p is of base type, we can choose any S, € M,, because the domains M,
are non-empty for base types b, and elements of M, are always strict.

Now let p = ¢ — 7. Then o and 7 can be decomposed in g; — ---0,, — ¢
and 73 — ---7, — d, with ¢,d € B. By induction hypothesis there exist strict
inhabitants S, and S.. Because the type interpretation is well-founded, we have
the strict element +. 4. Using this material we can define?:

Sp =AYy € M. Az1 € My, - Azp € My (ySe, -+ So,,) +e,d (Srzy - - 20)

Clearly, this functional is in the appropriate domain and it is also strict in y and
L1y .., Tp:

Y1 str> o Y2
=N SV1 cee Sa',,. str>c y2Scrl e Sa,,.
= +c,d(y1 Scrl fte So',,.) mon>d—d +C,d(y2S¢71 c S(rm)
= Spyl mon> T Spy2 -

A similar reasoning applies when some z; is varied: Let z1,...,z,,2' € M. Let
Ti str> z'. Because Syzq -+ -z is strict, S;Z1 - Tpn mon> Srzy -7’ <+ Ty, SO
for monotonic y, S,yz; - T mon> SpyZ1 - - - Tic1Z'. 0

Proposition 40. If the underlying type interpretation is well-founded, then for
every p € T, the partial order (M,, «>,) is well-founded.

Proof. (induction on the structure of p)

For p € B well-foundedness is given by the well-foundedness of >,. Let p =
o — 7. Assume that there exist {f;|i € IN} with f; s >5—r fi+1. But now,
using S, € S, we can construct the descending chain {f;(S,)]¢ € IN}, with
fi(Ss) ste>r fi+1(Ss), which contradicts the induction hypothesis. O

Proposition 41. The relation 4> is well-founded on terms of A™.

Proof. Let {s;|i € IN} of some type 7 be given such that 8; sr> siy1. By Def-
inition 36 this means that for every strict valuation a, [si]a str>r [Si+1]o- Let
a be the valuation {z — S,|z € V,,0 € T} (see Lemma 39), then « is such a
strict valuation, giving rise to a descending s¢,> chain in M., which contradicts
Proposition 40. O

4.3 Contexts preserve some order

There is no difference between bound and free variables with respect to the
ordering gt,>. FOr mon> this is stated in Lemma 22.

Lemma42. If for two A~ -terms s s4,> t then Az.s s> AT.t.

% See [6, p. 461] and [5, p. 83] for comparable functionals

320

Proof. Analogous to the proof of Lemma 22. Instead of arbitrary k and o, strict
k and o have to be chosen. a

Now we are ready to prove that contexts preserve some order:

Proposition43. If s men> t and J is a strict constant interpretation, then for
all contezts C, Cs o> Ct.

Proof. Let 8 mon> t and let C be a context, then C is of the form A\O.C’, with O €
FV(C"). Because C' is in B-normal form, it is of the form Az; - - - Az,.a8; - - - sy,
with ¢ € VU C. (Note that a may be 0.) So Cs —p C'[0 := s] and Ct —p
c'o:=1.

Now we prove with induction on the structure of the S-normal form of C':
0 € FV(C') = C'[0 := s] &> C'[0 := t]. Induction hypothesis (*) is: O €
FV (s;) = 5[0 := s] o> 5,[0 :=¢]. Let o be an arbitrary strict valuation, then
the following claim can be proved by induction on k:

Claim. For 0 < k < m, either [(as; ---sx)[0 := $]]a mon> [(as1---s4)[0 =
tlla, or O & FV(asy---si) and [as; - s]o is strict.

Before proving this claim we proceed with the main proof. We have that O €

FV(C'), so the claim yields [(as1 - $m)[0 := $]]a mon> [(as1 -+ 5,)[0 := t]a-

By Lemma 30 we may change mon> into 4> and by Lemma 42 we may put the

A-binders in front, which yields [C'[0 := s]]q st=> [C'[0 := t]]a- After applying

Proposition 26 on both sides we get [Cs]4 str> [Ct]a- The valuation o was an

arbitrary strict one, so using Definition 29 we conclude that Cs ;> Ct. O
We still have to prove the claim:

Proof. (induction on k).

If k=0:
- Ifa = 0O, then [a[0 := s]]q = [$]a mon> [t]a = [a[0 :={]]a -
- Ifa €V - {0}, then O¢ FV(a), and [a] o = a(a) is strict, because « is
a strict valuation.
—Ifa €C, then O ¢ FV(a), and [a]a = J(a) is strict, because J is a
strict constant interpretation.

If k = j + 1: We have the induction hypothesis, that either [(as;---s;)[0 :=
8]la mon> [(a81---8;)[0 := t]]a, or O & FV(as;---s;) and [as; -- - s;]« is
strict (**).

Firstly, [s;41[0 := $]]a mon> [$j+1[0 := t]]o (***), as the following calcula-

tion shows:

[s41[0 = s]]a
[(AO.sj+1)s]a by Proposition 26,
[A0.s;41]a[s]a
mon> [A0.Sj+1]a[t]e by Proposition 19,
[(A0-s541)t]a
P

From induction hypothesis (**) two cases can be distinguished:

321

If (@sy - -~ 55)[0 := 8] mon> (asy -+~ s;)[0 = ¢], then

ﬂ(asl N SJ‘+1)[D = 3]]]&
= [(as1---5;)[0 = s]lalsj41[0 := s]la
mon> [(a81++37)[0 = elasyna[0 = o]
mon> [[(asl T sj)[D = t]ﬂ,,l[sjﬂ [U = t]]a using. (***),
" Lass - sy32)[0 = dla -

In case O ¢ FV(as;---s;) and [as; ‘- s;]a is strict, we distinguish two

subcases:

a¢g 1:V(sj+1): ’][Z[‘hen O ¢ FV(as;---sj4+1) and by Definition 29, we have
strictness of [as; - - - s;|al$; = [asy---s; .

O FV(3j+1): J]la‘[i+1]a [asy -+~ s5+1]a

[(as1 -~ 5541)[0 := s]]a
= [asi---s5]alsi+1[0 = s]la
mon> [a81+ - 8j]als;41[0 := t]]a using TH(*) and Definition 29,

= II(asl v sj+1)[El = t]]]a .

5 A Proof Technique for Termination

The notions of Definition 34 and 38 are collected and extended in such a way
that we get the conditions for termination:

Definition 44. Let R be an HRS, with signature F = (B,C,V) and R a set ¢
rules. We say that R has a Termination Model if there is a well-founded typ
interpretation Z for B and a strict constant interpretation J for C, such that fo.
eachrulel - r € R, l mon> T-

Now we are able to state the relation between a rewrite step and the ordering
of the domains: '

Proposition 45. Let an HRS R have a Termination Model. If s »r t then
8 str> t.

Proof. Let s —g t. Then s =, (Cl) lp and t =, (Cr) lg, for some context C
and rule (I — r) € R. Because R has a Termination Model, ! mon> 7, SO by
Proposition 43, Cl g> Cr. Applying Proposition 26 and 27 yields: s> 1. O

The main theorem of this paper uses the well-foundedness of the domains:

Theorem 46. If an HRS R has a Termination Model, then R is terminating.

Proof. If R is non-terminating, then there exists a sequence (s;)ielN, With si ==
3i+1. By Proposition 45 we get an infinite descending chain (s;)iem, With 8; ser>
si4+1- This is impossible because of the well-foundedness of &> (Proposition 41).
Thus R must be terminating. u

322

The following is a recollection of the conditions that occur in the notion of a
Termination Model. Theorem 46 suggests the following proof technique for the
termination of an HRS:

~ Find convenient partial orderings Z(B) for each base type B, satisfying:

e I(B) is non-empty.

e I(B) is well-founded.

o There exist strict functions with type Z(a) — Z(b) — Z(b) for all com-
binations (a,b) of base types. (By Lemma 33 strict mon>>-monotonicity
suffices).

— Find a convenient strict interpretation J(c) for each constant symbol ¢ € C.
= Prove that for each rule (I — 7) in the system the interpretation of the left
hand side is greater than the interpretation of the right hand side, in symbols

IIl]] mon> |I"']]

In the next section the applicability of this proof method is shown.

6 Applications

6.1 Process Algebra

The first application comes from Process Algebra, or better an extension of
it: uCRL [7]. We only concentrate on the fragment of Process Algebra with
choice (+), sequential composition (+) and deadlock (§) and the data dependent
choice (X) from pCRL. The Process Algebra part can be formulated in a first
order Term Rewriting System (see for instance [1]). The rules for the Sum-
operator require higher-order rewrite rules to deal with the bound variables.
This reformulation of xCRL can be found in (16, p. 33].

There are two base types: {Proc, Data}. Furthermore, here is a list of function
symbols with their types:

+ : Proc — Proc — Proc 6 : Proc
- :Proc - Proc — Proc X' : (Data — Proc) — Proc

{X,Y,Z, P,Q, D} are used as free variables. Now we have the following set of
rules, with the binary function symbols written infix:

A3: X+X-X
A4: (X+Y)Z - (X-2)+(V-2)
AS: (XY)Z - X(Y'2)
A6: X+6-X
AT: 65X =6
Suml: X(Ad:Data.X) —» X
Sum3: (ZP)+ (PD) - (XP)

Sum4: £(Ad : Data.((Pd) + (Qd))) — (EP) + (ZQ)
Sum5: (ZP)X — X(Ad :Data.((Pd)-X))

323

To prove termination of this system we interpret both base types Data and
Proc by IN>;, with the usual ordering. This is a domain, because it is well-
founded, non-empty and there exists a binary strictly monotonic function, or-
dinary “+” for instance. The function symbols are interpreted in the following
way:

! [+] =XaXba+b+1 [§]=1

[I=XaAbaxb+a [Z]=Af3xf(1)+1

This is an extension of the interpretation in [1] for the Process Algebra part of
the system. The type level of all these function symbols is bounded by 2, so it
is sufficient to check if the interpretations for them are strictly mon>-monotonic
(Lemma. 33). The first three functions are clearly strictly monotonic. The last
is also strictly mon>-monotonic: Take f mon> g, then f(1) mon> g(1). But then
also 3 x f(1) + 1 mon> 3 x g(1) + 1. Now we compute the values of the left hand
sides and right hand sides.

interpretation of the left hand side interpretation of the right hand side
2x [X]+1 X1
((X] +[¥] +1) x [2] + [X] + [¥] +1 |[X] x [2] + [X] + [Y] x [2] + [Y] + 1
[XT < (I¥] x [2] + [2] + [Y] + 1) XIx(¥Ix[2) +[¥1+1)
[x]+2 X1
[x]1+1
3x[X]+1 [x1
3 x [P](1) + [PD] + 2 3x [P](1) +1
3 x ([P)(1) + [QI(1D) +4 3 x ([P)(1) + [Q1(1)) +3
3x [PI(1) x [X]+[X]+3x [PI(1) +1] 3x[P](1) x [X] +3 x [P]J(1) +1

The reader can verify that the interpretation of the left hand side is greate:
than the interpretation on the right hand side on each line in the table. So this
system of Process Algebra- and Sum rules is terminating.

6.2 Quantifier reasoning
In [12] some HRSs concerning first order predicate logic are presented as an
example. One of them is called mini scoping, pushing quantifiers inwards. The
base types are {Term, Form}. The function symbols are {V, A : Form — Form —
Form; V : (Term — Form) — Form}, the type level is at most 2.
The rules (with free variables {P, P',Q,Q'}) are:
V(Az.P) - P
V(Az.((P'z) A (Q'z))) — (VP) A (VQ')
V(dz.((P'z) v Q)) = (VPYVQ
V(Az.(P V (Q'z))) = PV (VQ')
Again we take as interpretation for both base types the positive natural
numbers IN>;. The interpretation of the function symbols is as follows:

[Al=1[V]=AaXba+b+1
IVl = A£.2 x £(1)
It is easily verified that under this interpretation the left hand side of each rule
is greater than the interpretation of the right hand side.

324

6.3 Surjective Disjoint Union

We give one more example. The signature is given by the only base type Term,
the function symbols:

case : Term — (Term — Term) — (Term — Term) — Term
tnl,tnr : Term — Term

All function symbols have level < 2. The free variables are {X, F,G,U }. The

rules are: case(inl(X),F,G) — F(X)
case(inr(X), F,G) — G(X)
case(U, Az.F(inl(z)), Az.F (inr(z))) — F(U)

Note that this example does not fit in the framework of [12] (see page 347).
Termination for this example is less trivial, because there is a real application in
the interpretation of the function symbols. Furthermore it is not the case that
the number of “case” occurrences decreases in every step: If X contains a “case”
occurrence, then F' can generate many copies of it in the right hand side of the
first rule.

But the interpretation in a Termination Model is easy: Take T (Term) = IN»;.
Furthermore, interpret:

[case] = Aa.AfAg.f(a) + g(a) +a
[enl] = [inr] = Aa.a + 1

These functions are strict: we only need to take into account monotonic func-
tions for f and g. Take @ mon> b. By monotonicity of f we have f(@) mon> f(b)
and the same holds for g. But then f(a) + g(a) + @ mon> f(b) + g(b) + b. Fur-
thermore, the interpretations of the left- and right hand sides can be computed:

Left hand side Right hand side
[FYIXT+ D) + [GIAXT+ D)+ [X] +1] [FI(IXD)
[FIIXT+ D) + [GIIX] + 1) + [X] +1| [G]([x])

2 x [F](u] +1) + [U] [FI(IVD)
The left hand sides are all greater than the right hand sides, because we may

restrict to monotonic functionals for F and G. So the system of “surjective
disjoint union” is terminating.

References

1. G.J. Akkerman and J.C.M. Baeten. Term rewriting analysis in process algebra.
Technical Report CS-R9130, Centre for Mathematics and Computer Science, June
1991.

2. H.P. Barendregt. The Lambda Calculus. Its Syntaz and Semantics. North-Holland,
Amsterdam, second, revised edition, 1984.

3. M. Bezem and J.F. Groote, editors. Proceedings of the 1°* International Conference
on Typed Lambda Calculi and Applications, TLCA '93, Utrecht, The Netherlands,
volume 664 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. V. Breazu-Tannen. Combining algebra and higher-order types. In Proceedings

325

3th
lAgrggual Symposium on Logic in Computer Science, Edinburgh, pages 82-90, July
R. de Vrijer. Surjective Pairing and Strong Normalization: Two Themes in Lambda
Calculus. PhD thesis, University of Amsterdam, 1987.

R.O. Gandy. Proofs of strong normalization. In J.R. Hindley and J.P. Seldin,
editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and For-
malism, pages 457-477. Academic Press, 1980.

J.F. Groote and A. Ponse. The syntax and semantics of xCRL. Report CS-R9076,
CWI, Amsterdam, 1990.

G. Huet and D.C. Oppen. Equations and rewrite rules: A survey. In R. Book,
editor, Formal Language Theory: Perspectives and Open Problems, pages 349-405.
Academic Press, 1980.

. J.P. Jouannaud and M. Okada. A computation model for executable higher-order

algebraic specification languages. In Proceedings 6t* Annual Symposium on Logic
in Computer Science, Amsterdam, The Netherlands, pages 350-361, 1991.

Z. Khasidashvili. Perpetual reductions and strong normalization in orthogonal
term rewriting systems. Technical Report CS-R9345, CWI, Amsterdam, July 1993.
J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical Centre
Tracts. Mathematisch Centrum, Amsterdam, 1980.

T. Nipkow. Higher-order critical pairs. In Proceedings 6t* Annual Symposium on
Logic in Computer Science, Amsterdam, The Netherlands, pages 342-349, 1991.
T. Nipkow. Orthogonal higher-order rewrite systems are confluent. In Bezem and
Groote [3], pages 306-317.

C. Paulin-Mohring. Inductive definitions in the system Coq. Rules and properties.
In Bezem and Groote (3], pages 328-345.

L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor,
Logic and Computer Science, pages 361-386. Academic Press Limited, London,
1990. In: The APIC-series 31.

M.P.A. Sellink. Verifying process algebra proofs in type theory. Technical Re-
port 87, Logic Group Preprint Series, Utrecht University, March 1993.

V. van Oostrom and F. van Raamsdonk. Comparing combinatory reduction sys-
tems and higher-order rewrite systems. Technical Report IR-333, Vrije Universiteit
Amsterdam, August 1993. Appears in this Volume.

D.A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge tracts in
theoretical computer science. Cambridge University Press, Cambridge, 1993.

H. Zantema. Termination of term rewriting by interpretation. In M. Rusinowitch
and J.L. Rémy, editors, Conditional Term Rewriting Systems, proceedings third in-
ternational workshop CTRS-92, volume 656 of Lecture Notes in Computer Science,
pages 155-167. Springer-Verlag, 1993. Full version appeared as report RUU-CS-
92-14, Utrecht University.

